美售台布雷系统引发争议 旅游业者忧虑冲击观光业******
中新网1月17日电 据台湾《联合报》报道,美方日前宣布出售“火山机动布雷系统”,引发议论。金门“立委”陈玉珍16日受访时极力反对,并表示地雷对金门人来说是一种痛,除了小时候不能去海边玩水,更曾有人因误踩地雷脚断手断。国民党“立委”也接连批评,坚决反对祸延子孙、草菅人命的政策。
民众党“立委”邱臣远也质疑,“战防雷”正是不对称战力中的一种,虽然军方宣称只会在战时布放,且有定时自毁功能,但难道没有替代的选项吗?
国民党“立委”郑正钤表示,和平才是避战的解方,把台湾布满地雷更无法带来和平。
旅游业者也忧虑布雷让观光受冲击,担心当年金门观光与经济如同被地雷掐住的噩梦重演。
观光旅游业已开始担心台湾购买布雷系统,恐吓跑观光客。台湾旅行商业同业公会联合会理事长萧博仁表示,“买布雷系统,对台湾的观光一定是一大损伤啊”,且一定布在海岸线,以往金门因为有地雷,观光客不敢去,即便后来启动扫雷,团体旅客慢慢愿意去玩,但因为海边可能埋着地雷,自由行旅客仍不敢放心走到海滩游玩;台湾若有地雷,谁还敢来玩?
提速近10倍!基于深度学习的全基因组选择新方法来了******
近日,中国农业科学院作物科学研究所、三亚南繁研究院大数据智能设计育种创新团队联合多家单位提出利用植物海量多组学数据进行全基因组预测的深度学习方法, 可以实现育种大数据的高效整合与利用,将助力深度学习在全基因组选择中的应用,为智能设计育种及平台构建提供有效工具。相关研究成果发表在《分子植物(Molecular Plant)》上。
全基因组选择作为新一代育种技术,通过构建预测模型,根据基因组估计育种值进行早期个体的预测和选择,从而缩短育种世代间隔,加快育种进程,节约成本,推动现代育种向精准化和高效化方向发展。
统计模型作为全基因组选择的核心,极大地影响了全基因组预测的准确度和效率。传统预测方法基于线性回归模型,难以捕捉基因型和表型间的复杂关系。
相较于传统模型,非线性模型(如深度网络神经)具备分析复杂非加性效应的能力,人工智能和深度学习算法为解决大数据分析和高性能并行运算等难题提供了新的契机,深度学习算法的优化将会提高全基因组选择的预测能力。
该研究团队以玉米、小麦和番茄3种作物的4种不同维度的群体数据为测试材料,通过创新深度学习算法框架开发了全基因组选择新方法。
与其他五种主流预测方法相比,该方法有以下优点: 可以利用多组学数据开展全基因组预测;算法设计中包含批归一化层、回调函数和校正线性激活函数等结构,可以有效降低模型错误率,提高运行速度;预测精度稳健,在小型数据集上的表现与目前主流预测模型相当,在大规模数据集上预测优势更加明显;计算时间与传统方法相近,比已有深度学习方法提速近10倍;超参数调整对用户更加友好。
该研究得到了国家重点研发计划、国家自然科学基金、海南崖州湾种子实验室和中国农业科学院科技创新工程等项目的支持。
学术支持
中国农业科学院作物科学研究所
记者
宋雅娟
(文图:赵筱尘 巫邓炎)